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Solitons and magnons in the classical Heisenberg chain 
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Received 4 September 1978, in final form 29 August 1979 

Abstract. We review the permanent profile solutions of the continuous classical Heisenberg 
chain and expound on the application of the inverse scattering method. Extending and 
amplifying the work of Takhtajan, we exhibit the liagonal’ action angle representation of 
the model. The spectrum of the Hamiltonian is exhausted by a magnon band and a soliton 
band. The magnons have no internal degrees of freedom and can be characterised by the 
dispersion law E = p 2 .  Like the sine Gordon doublet, the solitons have internal structure, 
they carry a continuous angular momentum m, and are characterised by the dispersion law 
E = 16 sin2(p/4)/lml, in accordance with Tjon and Wright. The continuous Heisenberg 
chain is a completely integrable Hamiltonian system possessing an infinite number of 
constants of motion. We establish the recursive procedure for the determination of the 
conserved integrated densities. 

1. Introduction 

In contrast to the quantum Heisenberg chain which, since the pioneering work of Bethe 
(1931), has been studied extensively (Mattis 1965, Lieb and Mattis 1966), the classical 
counterpart for a spin or angular momentum field s of fixed length has until recently 
received much less attention. This model, whose dynamics in the long-wavelength limit 
and in the presence of a magnetic field 6 in convenient units is governed by the 
precessional equation of motion (Landau and Lifshitz 1935) 

is, however, of considerable interest, both in its own right as a classical non-linear 
dynamical. system with intriguing properties and in providing an approximative 
description of magnetic materials exhibiting various kinds of one-dimensional 
behaviour; in particular, for large values of the quantum spin, i.e. in the semi-classical 
limit (de Jongh and Miedenia 1974, Steiner et a1 1976). Finally, what prompted ?he 
present author to undertake the following investigation is that the model provides the 
natural starting point for analysing the expected anomalous hydrodynamical behaviour 
of low-dimensional magnetic systems (Nelson and Fisher 1977). 

Special solutions of equation (1.1) have been derived by several authors. Naka- 
mura and Sasada (1974) found analytic expressions for the permanent profile solitary 
wave and periodic wave train solutions. Lakshmanan et a1 (1976) discussed the spin 
wave spectrum and derived also the solitary wave solution. Tjon and Wright (1977) 
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performed a numerical study and found that a single solitary wave is stable with respect 
eo small perturbations and that two colliding ones preserve their identity, thus providing 
evidence that the solitary wave is a bona fide soliton (Scott et al 1973). 

The spin wave is spatially extended, has a uniform energy density, and propagates 
with a constant amplitude. Its frequency w and wavenumber k are related by the 
dispersion law w = S‘k2+ h, where S‘ is the amplitude and is chosen in the z 
direction. The solitary wave, on the other hand, is spatially localised, has an energy 
density peaked at the ‘centre of mass’ position and a finite total energy E. It carries a 
linear momentum P, an angular momentum M, and is characterised by the dispersion 
law E = 16 sin2(P/4)/M. The wave train has a periodic energy density and can be 
visualised as a lattice of solitary waves or, alternatively, as a single one in a box with 
periodic boundary conditions. 

The general solution of equation (1.1) for arbitrary initial conditions has been 
considered by several investigators. Drawing from work by Hasimoto (1972) and Lamb’ 
(1976, 1977) on the relationship between the motion of helical curves and non-linear 
evolution equations, Lakshmanan (1977) has shown that the energy and current 
densities are given by the solutions of the completely integrable non-linear Schrodinger 
equation (Zakharov and Shabat 1972). In particular, this relationship enables him to 
exhibit the stable N-soliton envelope solutions for the energy and current densities 
from those of the non-linear Schrodinger equation, and to conclude that the continuum 
spin problem characterised by equation (1.1 ) is completely integrable and possesses an 
infinite number of constants of motion. Takhtajan (1977) has shown that equation (1.1) 
admits a Lax representation and, consequently, falls within the scope of the inverse 
scattering method, which allows for an exact solution of the arbitrary initial value 
problem (Scott er a1 1973, Bishop and Schneider 1979). Takhtajan derives the time 
dependence of the scattering data for the Lax operator and presents the Gel’fand- 
Levitan-Marchenko equation for the reconstruction of the spin density, i.e. the inverse 
scattering problem. Furthermore, he gives the single-soliton solution and the phase and 
‘centre of mass’ shifts induced during two-soliton collisions. He concludes by noting 
that the Hamiltonian approach developed by Zakharov and Faddeev (1972) for the 
Korteweg-deVries equation and by Takhtajan and Faddeev (1975) for the sine Gordon 
equation allows for the complete integration of the continuous Heisenberg chain in 
terms of canonical action angle variables, and for the explicit construction of the infinite 
series of constants of motion. Finally, we mention the work of Corones (1977) who, in a 
small-amplitude approximation, has shown that the slowly varying non-linear envelope 
of linear magnons satisfies the non-linear Schrodinger equation, thus, independently, 
corroborating the conclusions of Lakshmanan (1977). 

The purpose of the present paper is two-fold. In the first part, which is of an 
expository character, we discuss the physical properties of the special permanent profile 
solutions and, furthermore, expound on the application of the inverse scattering 
methods to the general initial value problem, following Takhtajan (1977) and hopefully 
elucidating some of the steps he performs or implies. In the second part we extend and 
amplify the work of Takhtajan by explicitly carrying out the transformation from the 
spin variables .to the canonical action angle representation, thereby exhibiting the 
independent magnon and soliton contributions to the transformed Hamiltonian. In 
constructing the appropriate Poisson bracket relations, characterising the canonical 
transformation, we follow, in particular, Zakharov and Manakov (1975), who have 
applied such methods to the non-linear Schrodinger and Korteweg-de Vries equations. 
We furthermore construct the infinite series of constants of motion using the methods 
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developed by Zakharov and Faddeev (1972) and by Takhtajan and Faddeev (1 975) for 
the Korteweg-deVries and sine Gordon equations, respectively. 

The paper is organised in the following manner. In § 2 we introduce the classical 
isotropic Heisenberg chain and the associated Poisson bracket algebra for the spin field, 
and derive the continuum representation. In § 3 we embed the continuum model in a 
Hamiltonian framework and identify the conserved densities associated with the global 
symmetry transformations. In 0 4, which contains three subsections, we discuss the 
physical properties of the special permanent profile solutions: spin waves (§ 4.1), 
solitary waves (0 4.2) and periodic wave trains (§ 4.3). In § 5, which includes four 
subsections, we carry out a general dynamical analysis by means of the inverse 
scattering method. We discuss the Lax representation ( 5  5.1) and the associated 
eigenvalue problem of the Lax operator (§ 5.2). We deduce the time dependence of the 
scattering data for the Lax operator (§ 5.3) and, finally, derive the Gel’fand-Levitan- 
Marchenko equation for the reconstruction of the spin field from the time-dependent 
scattering data (0 5.4). In 0 6 we construct, using the inverse scattering method, the 
canonical transformation to the action angle representation. In order to identify the 
dynamical modes we represent in 0 7 the total energy, the total momentum and the total 
angular momentum in the action angle representation, and discuss the spectrum of 
solitons and magnons in same detail. In § 8 we construct the infinite series of conserved 
densities. We end in § 9 with a summary and a conclusion. Since a proper discussion of 
the model requires a fair amount of analysis, we have deferred encumbering technical 
and mathematical aspects to six appendices. 

Below we summarise our main result. Assuming that the ground state of the 
continuous Heisenberg chain has the constant spin field pointing in the z direction and, 
furthermore, imposing the fixed boundary condition S’ -$ 1 for 1x1 + 00 and choosing a 
rotating frame such that &= 0, the Hamiltonian H, the total momentum P, and the z 
component of the total angular momentum M‘, i.e. the three constants of motion 
associated with the global symmetries of the time translation, space translation and spin 
rotation, respectively, are in the action angle representation given by the ‘diagonal’ 
expressions 

M 
H -  dAn(A)w(A)+ 1 E, I n = l  

M 
P =  dAn(A)p(A)+ Pn I n = l  

M I n = l  
M ‘ =  -- dAn(A)+ 1 m,. 

(1.2a) 

(1.2b) 

(1.2c) 

Here n(A),  determined by the initial conditions, is the density of magnon modes in A 
space. In units of n ( A )  the magnons have a quadratic dispersion law w ( A )  = *(A)*, 
@ ( A )  = 4A2 and p ( A )  = 2A, and carry unit angular momentum. The energy En, the 
momentum pn and the angular momentum m, of the discrete soliton modes, likewise 
specified by the initial conditions for the spin field, are related by the dispersion law 
E, = 16 sin2(pn/4)/lmn/, i.e. the same as for the solitary waves. Like the sine Gordon 
‘breather’ (Bishop and Schneider 1979), the solitons have internal structure; they carry 
an angular momentum. For small momentum the ‘magnetic’ solitons have an effective 
mass proportional to their angular momentum. 
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2. The model 

The classical ferromagnetic Heisenberg chain in a constant field is governed by the 
Hamiltonian 

H = - J ~ S ~ S , , + ~ - H ~ ~ S , ,  (2 . i )  

where J is a positive nearest-neighbour exchange coupling and H:, a = x, y ,  z ,  is a 
magnetic field, both of dimension energy. T i e  dimensionless spin field SEj a = x, y ,  2,  

measured in units of action, associated with the site n of a one-dimensional lattice, 
n = i, . . . , N, with lattice parameter a, is assumed scaled to unit length, that is 

The Hamiltonian I-i is the generator of time translations (Landau and Lifshitz 

n 'I 

SZ2 = 1. 

1960). For the spin field, in particular, we thus obtain the equation of motion 

dSnldt = (H ,  Sfl} (2.2) 
where (A, B }  denotes the Poisson bracket (Landau and Lifshitz 1960) 

dA dB dB dA 
dp; dqz dp; dqE 

{A, B ) = 1 (- - - -) , (2.3) 

defined in terms of an underlying canonical basis (q:, p Z ) ,  (Y = x, y 9  z ,  pertaining to each 
site of the lattice. Since the composite spin field has the dynamical structure of an 
angular momentum, that is Sfl = @,? x pn, we infer the non-canonical Poisson bracket 
relations (Landau and Lifshitz 1960) 

(2.4) 

and, as a result, inserting equation (2.1) in equation (2.2), the equation of motion 

dSfl/dt = J& x (&+, + sfl -,) + $, x &. (2 .5)  

Since the non-linear difference character of equation (2 .5)  renders a general 
discussion difficult, it is expedient, for the purpose of investigating the properties of the 
Heisenberg chain at wavelengths much larger than the lattice distance, to replace the 
Hamiltonian (2.1) by the continuum form 

obtained by assuming a slow variation of S, over a lattice distance and expanding 
Sfl = s ( x ) ,  keeping only leading-order terms. We have, furthermore, measured lengths 
in units of the lattice parameter a, energies in units of the exchange constant 1, chosen 
the dimensionless field 6-=Bo/.l' in the positive z direction, and subtracted the 
ground-state energy. The continuum spin field S(x) now satisfies the Poisson bracket 
algebra 

{S"(x), S"(Y)} = -6(x - y )  E o i % Y ( X )  
Y 

and equation (2 ,5 ) ,  correspondingly, takes the form 

(2.7) 
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The precessional equation of motion (2.8) was first derived on phenomenological 
grounds by Landau and Lifshitz (1935) and later, independently, by Doring (1947). The 
approach by means of Poisson brackets is due to Mermin (1964, 1967). We stress that 
the continuum form (2.6) only correctly samples the long-wavelength spin configura- 
tions of the Heisenberg chain (2.1). In the continuum limit ‘neighbouring’ spins deviate 
only little with respect to one another. The spin field, however, ‘floats’ over all 
directions, as indicated in figure 1, where we have shown an arbitrary spin configura- 
tion. 

Figure 1. Arbitrary spin configuration with envelope shown. 

3. Hamiltonian formulation-constants of motion 

In order to exhibit the non-linear character of the spin problem, caused by the 
precessional self-coupling s x d2S/dx2, within the framework of Hamiltonian dynamics 
(Landau and Lifshitz 1960), we introduce canonical variables. This also enables us to 
identify easily the constants of motion associated with the global symmetries of the 
Hamiltonian (2.6). 

Following Tjon and Wright (1977) we choose as canonical coordinate q ( x )  the local 
azimuthal angle 4 ( x )  in a polar coordinate basis ($(x), O ( x ) )  of the spin field s (x ) .  In 
analogy with the quantum treatment of a spin (Landau and Lifshitz 1958), the 
corresponding canonical momentum p(x) is then given by the z component of the spin 
field, S ” ( x )  = cos O(x). Introducing S” = S” *isy,  

s+(x) = (1 - p ( ~ ) ~ ) ) ” ’  exp(iq(x)) S” (x) = p ( x )  (3.1) 

and it follows from equation (2.7) that p ( x )  and q ( x )  satisfy the canonical Poisson 
brackets 

(3.2) M x ) ,  d Y ) )  = S(X - 4’) {P(X), P(Y)l={4(x), q(Y)J= 0. 

In terms of the variables p(x) and q ( x )  the Hamiltonian (2.6) takes the form 

(3.3) 

The corresponding equations of motion, which, of course, are equivalent to the field 
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equation (2.8), are given by 

(3.4a) 

( 3 . 4 b )  

Unlike the Hamiltonian for a particle system, H = T( p )  + U(q) ,  which is a sum of a 
kinetic energy T ( p )  and a potential energy U(q),  the form of equation (3.3) does not 
allow for a simple particle-like interpretation and shows the strong intrinsic non-linear 
character of the spin problem. 

The total momentum I1 is the generator of space translations and is defined by the 
Poisson bracket dF/dx = -{H, F }  (Landau ancd Lifshitz 1960), where F is an arbitrary 
function of p and q. For the spin density, in particular, we have 

dS/dx ,-{H, g} .  (3.5) 

The Poisson bracket of H with H for a 'string' of length 2L, {H,H}= 
[t(d$/dx)' - hS']:I?JA, vanishes provided we impose either fixed boundary conditions 
S' + 1 and d$/dx ii 0 for 1x1 = L+ CO or periodic boundary conditions S' (L)  = S"( -L)  
and (dS/dx),,= = (dg/dx),=-L, in which case the Hamiltonian is translationally 
invariant and, since {n, H }  = 0,  the total momentum is a constant of motion. In the 
basis (3.1~-c) II is given by the integrated density (Tjon and Wright 1977) 

dx(1 - p )  dq/dx (3.6) i 
where we, in order to ensure a vanishing TI in the ground state S' = p  = 1, have 
subtracted a total derivative. 

'The total spin or angular momentum A? is the generator of rotations in spin space. It 
is defined by the Poisson bracket {Ma,  S p ( x ) } =  - & E ~ ~ ~ S " ( X )  (Landau and Lifshitz 
1960), and it follows from equation (2.7) that 

M' = dx(S'(x)- 1) I M Y =  dxSY(x)  I M" = dxS"(x) I (3.7) 

where we have subtracted the ground-state value. In the basis (3.la-c) 
form 

takes the 

M +  = dx(1 -p2)'" exp(iq) M "  = I dx(p - 1). (3.8) 

For 6=0 the Hamiltonian (2 .6 )  is invariant under rotations in spin space. 
Consequently, the components of A? are constants of motion, i.e. {a, H} = 0. In the 
presence of the field the Hamiltonian remains invariant under rotations about the t 
axis. Hence, {M", H }  = 0 and only M" is a constant of motion. 

4. Permanent profile solutions 

Prior to discussing the general dynamical solution of the continuous Heisenberg chain 
(2.6), it is instructive to consider a class of special solutions which can be derived by 
quadrature, namely spin configurations propagating with a permanent profile. 
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We search, in other words, for solutions of the form S(xt) = s ( x  - u t ) ,  where v is the 
phase velocity of the permanent profile. In terms of the equations of motion (3.4~-b) 
we obtain, inserting q = q(x - u t )  and p = p ( x  - u t ) ,  

2 
dq .-h -"dX= -- dx2 (l-p2)' dx 

dp 2 d2q dp dq -0-=( l -p  ) -3-2p-- .  
dx dx dx dx 

The second equation is readily integrated once: 

Substit'uting equation (4.1) we arrive at a second-order equation for p which, integrated 
once, yields 

(dp/dX)'=F(p) =2hp(p2-  1)- ~ ~ ( l f p o - 2 p o p ) - p 1 ( p ~ -  1) (4.2) 

where p o  and p1 are constants of integration. The general solution of equation (4.2) is 
given by an elliptic function (Whittaker and Watson 1962). For the present purposes, 
however, we limit ourselves to an elementary discussion. 

In order to obtain a solution of equation (4.2) we must choose p o  and p1 such that the 
cubic polynomial F ( p )  is positive for p in the admissible range l p l <  1. Depending on 
the positions of the roots of F ( p )  and its sign, we can distinguish three main cases. 

(i) F ( p )  is negative except for a double root pa. In this case p is tied to the value P A  

and equation (4.1) has the solution q = k(x -vt)+qo, where k = ( p o - p A )  (1 - p i ) - '  
and qo is an integration constant. In spin space S' = p A ,  S +  = (1 - p a )  exp(iq) the 
above solution corresponds to the propagation of a spin wave with wavenumber k ,  
frequency vk and a constant amplitude p A .  

(ii) F ( p )  has a single root p A  and a double root at one of the end points, say p = 1, is 
positive for pa < p  < 1 and otherwise negative. In this case equation (4.2) has a turning 
point (Jeffreys and Jeffreys 1972) at p = p A  and a degenerati: one at p = 1. The motion 
of p is restricted to the interval pa < p  < 1. For 1x1 + CO p approaches the ground-state 
value+l .  In order to ensure a solution of equation (4.1) we choose p o =  1, i.e. 
q = v j"-"'dy (1 + p ( y ) ) " ' ,  and for dp/dx to vanish for Ix/+00 p1 = v2+2h.  In spin 
space this solution corresponds to the propagation of a solitary wave with phase velocity 
v and amplitude 1 - .PA.  

(iii) F ( p )  has single roots at p A  and p B ,  is positive for p A  < p  < p B ,  and otherwise 
negative. In this case equation (4.2) has turning points at bothpA and pB.  The motion of 
p is confined to the interval p A  < p  < p B  and is oscillatory with period 2 dp F ( P ) - ~ .  
The same applies to the solution of equation (4.1), q = v j'-"'dy (po-p(y)) (1 - 
p(y)')-'. In spin space the above solution corresponds to the propagation of a periodic 
wave train with phase velocity v and amplitude pB -pa. As the period diverges, the 
wave train reduces to a single solitary wave. 

Finally, we remark that the case where equation (4.2) has a turning point at pa and a 
degenerate one at p B  is a variant of case (ii), corresponding to a rotation of the spin 
frame, i.e. a solitary wave with p approaching the ground-state value p B  for 1x1 -+ 00. 
Also, for certain values of p o  and p1 the periodic wave train in case (iii) degenerates to a 
spin wave in a rotated frame. 

2 1/2  
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4.1. Spin waves 

As discussed above, the spin wave has a constant amplitude. From the equation of 
motion (2.8) we thus obtain dSc/dt = is' d2S'/dxz-iS+h, subject to the constraint 
S -  d2S'/dx2 = S' d2S-/dxL. Imposing, furthermore, the length condition S'S-+ 
(S')' = 1 we infer, in accordance with Lakshmanan et a1 (1976), the spin wave solution 

s + ( x t )  = (1 - (s')~)''' exp[i(kx - wt  + (4.3) 
specified by the amplitude S', the wavenumber k,  the field h and the phase 4. The 
frequency w is given by the dispersion law: 

w = S ' k 2 + h  (4.4) 

which depends quadratically on k and has a gap h. Unlike a quantum spin wave (Bloch 
1930), which is an elementary excitation, the classical counterpart forms a band, even 
for a fixed value of k,  as shown in figure 2, where we have plotted w versus k for IS' 1 s 1. 
We also remark that for h = -S'k2, i.e. lhl G k 2 ,  we have a band of static spin waves. 

W 

Figure 2. Plot of w = S ' k ' i h .  The shaded area indicates the spin wave band (arbitrary 
units). 

The energy density of the spin wave is obtained by substituting equation (4.3) in 
equation (2.6): 

E = : k 2 p  - (s")2] - h ( S 2  - 1) (4.5) 

i.e. the total energy of the non-localised wave is infinite. We note that the largest energy 
density is attained by the band of static spin waves for h = --S'k2. 

We stress that the spin wave spectrum discussed here is an exact solution of the 
equation of motion (2.8). By considering small deviations from the aligned ground state 
SI = 1 we obtain a linearised spectrum with dispersion law w = k 2  i- h. It is interesting 
to notice that the sole effect of the local mode coupling $xd2$/dx2, which in 
wavenumber space gives rise to harmonic generations, is to change the stiff ness 
coefficient from unity to S'. 

4.2. Solitary waves 

In order to derive the solitary wave solution (Nakamura and Sasada 1974, Lakshmanan 
et a1 1976, Tjon and Wright 1977) we choose, as discussed above, p o =  1 and 
P I =  v2+2h  in the equations of motion (4.1; and (4.2), i.e. dqldx = u(1 +p)- '  and 
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(dpldx)’ = ( p  - 1)2 [ 2 h ( p  -+ 1) -- u 2 ] .  In polar coordinates p = cos 8 and q = 43 we have 
d4/dx = u(l+cos ,!?)-I and (d8/dx)’= 2 h ( l  -cos ,!?)-u’(l+cos 0) (1 -cos @)-‘which, 
introducing the half-angle 6 /2 ,  are readily solved by quadrature (Tjon and Wright 
1977). We thus obtain the solitary wave solution 

A 
COS e(xt) = 1 -- l_l--- ( 4 . 6 ~ )  cosh2[(x -. u t  -- x o ) / ~ ]  

d(xt )  =: & , + ~ u ( x  --Vt-xo)+ta~~-i(--tanh[(x 2 -vt-x,)/r]) (4 .6b)  
VI- 

where we have introduced the amplitude A and the width r: 

The ‘centre of mass’ yo and the phase C#Jo are determined by the initial conditions. 
The solitary wave mode ( 4 . 6 ~ - b )  is conveniently characterised by the four 

parameters A,  r, x o  and C#Jo. Unlike the spin wave velocity w / k  which has an unlimited 
range, the phase velocity of the solitary wave is restricted to the interval u 2  s 4h. In the 
low-velocity limit the amplitude attains its maximum value 2, and the width its smallest 
value l/h”’. On the other hand, as the velocity approaches the limiting values f2h1’*, 
the amplitude vanishes while the width diverges, i.e. the solitary wave disappears. This 
behaviour is different from both the Korteweg-deVries and the sine Gordon solitary 
waves, which become sharper, and in the Korteweg-deVries case larger, as the velocity 
increases (Scott et a1 1973). In figures 3 and 4 we have depicted the longitudinal 
component of the solitary wave for a large and a small velocity, respectively. 

The phase or azimuthal angle 4, given by equation (4.6b),  is essentially a linear 
function of x - ut at the leading and trailing edges of the solitary wave. However, as we 

I 
I 

X O  x - v f  

Figure 3. Longitudinal component of small-amplitude-large-width-large-velocity solitary 
wave (arbitrary units). 

Figure 4. Longitudinal component of large-amplitude-small-width-small-velocity solitary 
wave (arbitrary units). 
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move across a region of width r about the centre of the wave, the angle q5 is augmented 
by a positive phase shift A 4 ,  

A 4  = 2 tan-'(2/vr) (4.8) 

as shown in figure 5. As the velocity approaches zero the phase shift attains its 
maximum value 7 ;  for u 2  = 4h the phase shift vanishes together with the solitary wave. 
In figure 6 we have plotted A 4  versus v. Furthermore, in order to illustrate the phase 
shift effect we have in figures 7-9 depicted the transverse component and the cor- 
responding envelope in the three cases of a small amplitude, a half amplitude, and a full 
amplitude solitary wave. 

I I 
I 

.Y - vt  

Figure S. The phase (b versus x - u t  showing the phase shift A(b (arbitrary units), 

Figure 6. The phase shift A 4  versus thc phase velocity U (arbitrary units). 

x - v t  

Figure 7. Transverse component of small-amplitude solitary wave with envelope shown 
(arbitrary units). 

Figure 8. Transverse component of half-amplitude solitary wave with envelope shown 
(arbitrary units). 
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Figure 9. Transverse component of full -amplitude solitary wave with envelope shown 
(arbitrary units). 

The energy density of a solitary wave, obtained by substituting equation (4.6a-b) in 
equation (3.3), 

4 / r 2  
e(xr)=- 

cosh2[(x - u t  - x o ) / ~ ]  (4.9) 

is, unlike the spin wave case, peaked at the 'centre of mass' position. The finite total 
energy 

(4.10) 

is inversely proportional to the width. In figure 10 we have plotted the energy density. 

Figure 10. Energy density of solitary wave (arbitrary units). 

The total momentum of a solitary wave, evaluated by inserting equation (4,6a-b) in 
equation (3.6), 

(4.11) 

is restricted to the interval Ill1 s 27~.  'This peculiar feature is presumably related to the 
inherent length scale in the continuum model (2.6); introducing the lattice parameter a, 
the critical momentum is given by 21r/a. The total momentum assumes its maximum 
value 21r for a full-amplitude wave, the value 7~ for a half-amplitude wave, and vanishes 
together with the solitary wave. In contrast to the Korteweg-deVries and sine Gordon 
solitary waves (Bishop and Schneider 1979) the momentum velocity relationship (4.1 1) 
or, equivalently, l z i l =  2h"2 cos(n/4), is unusual in that u atta.ins its maximum value 
2h1/2  for vanishing II, and vice versa. This peculiar relationship is shown in figure 11. 
Finally, the t component of the total angular momentum of a solitary wave, derived by 
substituting equations ( 4 . 6 ~ ~ - b )  in equation (329,  

n =  4 ~in-'[(A/2)' '~] = 4 sin-'[(l- ~ ~ / 4 h ) " ~ 3  

(4,12) 
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Y 

-2 IT 0 27r 

Figure 11. Velocity-momentum relationship for a solitary wave (arbitrary units). 

is inversely proportional to the width and the magnetic field, and attains its largest 
numerical value 4/ h "' for U = 0. 

Instead of characterising the solitary wave by the amplitude and the width, we can 
use the above constants of motion. In accordance with Tjon and Wright (1977). E, II 
and M' satisfy the dispersion law 

E=-- sin2 (:) + h IM" 1 = (4.13) 

obtained from equations (4.10)-(4.12) by elimination of A and r, using h = 2 /Ar2 .  The 
solitary wave has a continuous internal degree of freedom; it carries an angular 
momentum. In the low momentum limit II<< I ,  E = I12/IM'1, i.e. the solitary wave 
propagates as a free particle with effective mass 1M21/2. This analogy ceases, however, 
to be valid for larger values of II, in particular, as we approach the critical momentum 
27r. In figure 12 we have plotted the dispersion law (4.13) for different values of lMz! .  
We note, however, that, similar to the spin wave spectrum depicted in figure 2, the 
solitary waves form a band since IM'I has a continuous range, as also indicated in figure 
12. 

Finally, we remark that in the small-amplitude-large-width limit, i.e. from equation 
(4.7) u2+4h, the solitary wave approaches the spin wave mode for S' + 1, From 
equations (4.3) and (4.66) we obtain w = 2h arid k = hl'*, in agreement with the 

E 

Figure 12. Plot of E = 16 sinZ(n/4)//M'l for IM'I = 16, 32 and 64. The shaded area 
indicates the solitary wave band. 
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dispersion law (4.4) for '3' + I. Notice, however, that the spin wave frequency is 
determined by the magnetic field. When deforming an arbitrary spin wave, one obtains 
in general the periodic wave train solution described in the next paragraph. It is indeed 
instructive (Corones 1977) to regard the solitary wave solution as an amplitude- and 
phase-modulated spin wave with a single node. 

4.3. W'ave train 

The wave train solution is given by an elliptic function (Nakamura and Sasada 1974), 
and we shall not discuss the analytic structure here. From the above discussion of the 
solitary wave solution we can, however, draw some simple conclusions. The wave train 
can be visualised as a periodic lattice of identical co-moving solitary waves with an 
energy density peaked at the 'centre of mass' positions. The phase 4 increases 
essentially linearly with x - u t  in the regions between the peaks; across a peak 4 is 
augmented by a phase shift AI$, approximately given by equation (4.9). In the limit 
where the period of the wave train becomes large the ground state is nearly completely 
established in the regions between the peaks. In figure 13 we have depicted the 
transverse component and the corresponding envelope of a periodic wave train. We 
also remark that the wave train with period L is essentially equivalent to subjecting a 
solitary wave to periodic boundary conditions in a box of size L, as also indicated in 
figure 13. 

We finally notice that, regarded as an amplitude- and phase-modulated spin wave, 
the wave train, of course, corresponds to the case of infinitely many periodically spaced 
nodes, the period being related to the wavenumber of the spin wave. 

SYI Box 

Figure 13. Transverse component of periodic wave train with envelope and box shown 
(arbitrary units). 

5. General dynamical analysis (inverse scattering method) 

For the majority of non-linear dynamical systems in one or higher dimensions an exact 
solution of the arbitrary initial value problem is in general inaccessible. However, as 
shown by Lakshmanan (1977) and Takhtajan (1977), the continuous Heisenberg chain 
belongs to the interesting class of non-linear one-dimensional systems which are 
completely integrable by means of the inverse scattering method (Scott et a1 1973, 
Bishop and Schneider 1979). 

5.1. The L a x  representation 

The essential step in applying the inverse scattering method is the introduction of the 
Lax representation. Following Takhtajan (1977) we embed the equation of motion 
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(2.8) in the Pauli matrix basis CT", maup = 8"' + i Z, E""U~ (Landau and Lifshitz 1958). 
Introducing the spin matrix S = Z, uaS", equation (2.8) assumes the form 

where we, without loss of generality, have set h = 0 since the magnetic field term in 
equation (2.8) can be absorbed by a transformation to a rotating frame, S + +  
S' exp(-iht), i.e. by adding a constant frequency term ht to the azimuthal angle. 

In order to 'monitor' the instantaneous spin configuration we consider the asso- 
ciated eigenvalue problem iL9 = A 9 .  The operator L = Sd/dx, acting in a space of x 
dependent matrices P, is a function of the spin field and is therefore time-dependent. 
However, as has been shown by Takhtajan, the equation of motion (5.1) implies that the 
spectrum {A} of 1, is independent of time; the eigenfunction 9, on the other hand, 
evolves in time according to idY/dt = MP, where M = 2Sd2/dx2 + (dS/dx)d/dx. For a 
proof of the above assertions we refer to appendix 1; see also Scott et a1 (1973). 

The importance of the Lax representation (L,  M )  lies in the fact that it replaces the 
in general intractable problem of solving the non-linear equation of motion directly, by 
the solution of two linear operator problems 

d P  d 2 9  d S d V  d P  
dx dt dx2 dx dx 

i-=2s-+- - iS---=hP ( 5 . 2 )  

where the spectrum ( A )  is a constant of motion, and the subsequent reconstruction of 
the spin field. Since there exists a variety of mathematical techniques for linear 
problems, this represents a major simplification. A representation of the kind (5.2) was 
first introduced for the Korteweg-deVries equation in the pioneering work by Gardner 
et a1 (1967), and later refined by Lax (1968), hence the name. Since that time Lax 
representations have been found for a whole class of one-dimensional non-linear 
evolution equations (McLaughiin 1975), comprising among others the non-linear 
Schradinger equation (Zakharov and Shabaa 1972) and the sine Gordon equation 
(Ablowitz et a1 1973). 

5.2. The eigenvalue problem of the Lax operator 

By means of the identity S 2  = I, which follows from the length condition Z, S"* = 1, we 
express the eigenvalue problem of the Lax operator L in the form 

d 9  
dx 

i - = ASP. (5.3) 

In analogy with the spectral theory of the one-dimensional SchrGdinger equation 
(Landau and Lifshitz 1958, Faddeev 1963) which, incidentally, is the associated Lax 
operator problem for the Korteweg-deVries equation (Zakharov and Faddeev 1972), 
we distinguish, in the case of fixed boundary conditions at infinity for the spin field, that 
is S(x) + cr' for 1x1 -+a, equivalent to the infinite-volume limit of the continuum chain, 
two kinds of solutions to equation (5.3): scattering solutior,s corresponding to a band of 
real eigenvalues --a3 < A < Q? ImA = 0, and bound-state solutions which, since I, is 
non-Hermitian, are characterised by discrete complex eigenvalues A,, n = 1, . . . , M. 
The spin field S(x) acts as a 'potential' giving rise to 'wavefunctions' 9 ( x )  with different 
asymptotic behaviour. In the important case of periodic boundary conditions, i.e. 
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S ( x )  = S(x + L) ,  corresponding to enclosing the continuum chain in a box of size L, 
Bloch's theorem implies that the spectrum consists of 'allowed' and 'forbidden' bands. 
As indicated by the work of Dubrovin and Novikov (1975) on the Korteweg-deVries 
equation, a discussion of equation (5.3) in the periodic case is, however, technically 
difficult and will not be considered here. 

Referring to appendix 2 for mathematical details, we give below a brief discussion of 
the eigenvalue problem. Following Takhtajan, we introduce two special solutions of 
equation (5.3), the Jost functionsF(xA) and G(xA) (Jost 1947) determined by boundary 
conditions at infinity, i.e. 

F(xA) -+ exp(-ihv'x) forx-+ f a 3  (5.4a) 

G(xA) -+ exp(-iha'x) for x + -W. (5.4b) 

The columns (FI2 ,  F22) and (Gl l ,  G21) are analytic in the upper-half complex A plane, 
whereas the columns (Fll, &) and (G12, G22) are analytic in the lower-half plane. 
Moreover, assuming that S(x) approaches the ground-state matrix U' faster than 
exp(-4Aolx/\ for 1x1 + 00, both F and G are analytic in the Rargmann strip IImA I < A o  
(Bargmann 1949). Since equation (5.3) is of first order F and G are related by a 
constant matrix, i.e. 

G(xA) =F(xA)T(A) ( 5 . 5 )  

where the transition matrix T ( h  ), characterising the eigenvalue problem, has the form 

From the analytic properties of F and G it then follows that a ( A )  is analytic in the 
upper-half plane, including the Bargmann strip, and that b(A) is analytic at least in the 
Bargmann strip. 

The scattering solutions for real A are characterised by the transmission and 
reflection of an incoming wave. By means of the Jost function G, characterised by the 
boundary condition (5 .4b ) ,  the transmitted wave at x -+ -CO can be expressed in the 
form 

Introducing the transition matrix T by equations (5.5) and (5.6) in order to relate F and 
G and using the boundary condition (5.4a), the incoming and reflected waves at x + +CO 

are given by 

and we identify the transmission and reflection coefficients 

where the last relationship follows from equation (5.6). Notice that, unlike the 
Schrodinger equation, the eigenvalue problem (5.3) is non-Hermitian and as a 
consequence the total probability is not conserved, as indicated by equation (5.3). In 
figure 14 we have shown the scattering solution. 
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x 

Figure 14. Transmitted 2nd reflected waves for real A, characterising a scattering solution. 

The bound-state solutions correspond to complex values of A .  By means of the Jost 
function G, whose first column is analytic in the upper-half plane, and the boundary 
condition (5 .4b ) ,  we express a bound-state solution with envelope decaying as 
exp(-/xlImA) for x 7’ -a and ImA > 0, in the form 

For x -$ - t a  we obtain, using equations j5”4a), (5.51, and (5.61, 

and we must, in order to exclude an increasing solution for x + +CO, require a ( A )  = 0, i.e, 
the bound-state spectrum is determined by the zeros of a ( A )  in the upper-half complex 
A plane, or, alternatively, by the poles of the analytically continued transmission 
coefficient t ( A ) .  For ‘potentials’ S ( x )  approaching the ground-state value uz faster than 
/x for /xi + 00 U ( A )  has only a finite number of zeros A,, n = 1, . . . , M, corresponding 
to a finite number of bound states, in complete analogy with the spectrum of the 
Schrodinger equation for potentials falling off faster than the Coulomb potential. The 
normalised bound-state solutions P B s  = exp(-iA,x) for x i. --OO are furthermore 
specified by the ‘asymptotic characteristics’ b,, i.e. PBs =I b, exp(iA,x) for x + +a and 
n = 1, . . , , M. In case A, falls within the Bargmann strip we have by analytic continua- 
tion b, = b(A,) for iImA,,[ < A o  and n = l , .  . . , M. In figure 15 we have shown the 
bound-state solution. 

The solutions of the eigenvalue equation (5.3) are thus completely characterised by 
the scattering data 

{r(A), ---CO < A < ‘0, Im A 0; A,, b,, n = I, . . , M}.  (5.8) 

Furthermore, by means of the spectral representation 

X 

Figure 15. Decaying waves for complex A, characterising a bound-state solution. 

(5.9) 
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together with equation (5.7) the matrix elements a ( A )  and b(A), i.e. the transition 
matrix T(A), are given in terms of the scattering data (5.8). The spectral form (5.9) 
shows that a ( A )  has a branch cut along the real axis corresponding to the scattering 
states, the discontinuity across the cut being determined by the reflection coefficient 
r(A) and, moreover, allows for an analytic continuation onto the second Riemann sheet 
where a ( A )  has poles at A =A:, n = 1 , .  . . , M. 

5.3. Time dependence of the scattering data 

In order to determine the time dependence of the scattering data (5.8) or, equivalently, 
the transition matrix T(At), induced by the time evolution of the ‘potential’ S(xt), we 
consider, using the Jost function G, a solution at x + --CO of the form q(x t )  = G(xA)A(t). 
By means of the Lax representation (5.2), the boundary conditions S + a z  and 
dS/dx + 0 for 1x1 +CO, and equation (5.4b) we have A(t)  = exp(2iA2t)A(0). For x + 
+-CO, using equation ( 5 3 ,  the solution has the form q(x t )  = F(xh)T(At)A(t), and we 
infers by means of the Lax representation (5.2) and equation (5.4a), the time- 
dependent transition matrix 

T(At) = exp(2iA2a‘t)T(AO) exp(-2iA2a‘t). (5.10) 

The time evolution of the spin field S(xt) given by the non-linear equation of motion 
(5.1) thus induces a similarity transformation of T(ht) .  By means of the identity 
exp(2iA ’azt) = cos(2A ’ t )  + iu-’ sin(2A’t) we obtain for the matrix elements a ( A t )  and 
b ( A t )  

(5.11) a ( A t )  = a (A 0) b(At) = b(A0) exp(-4iA2t) 

or, equivalently, for the scattering data (5.8) 

r(At) = r(A0) exp(-4iA2t) --CO<A<-CO 

An(t) = A n ( ( ) )  

b,(t) = b,(O) exp(-4iA:t) 

n =1, .  . . , M  

n = 1,.  . . , M 

in accordance with Takhtajan. 

( 5 . 1 2 ~ )  

(5.12 b) 

( 5 . 1 2 ~ )  

5.4. The inverse scattering problem 

The reconstruction of the spin field, i.e. the ‘potential’ S(xt), from the time-dependent 
scattering data (5.12~-c) is called the ‘inverse scattering problem’ (Faddeev 1963) and 
is achieved by means of a linear integral equation, the Gel’fand-Levitan-Marchenko 
equation, presented by Takhtajan and derived in appendix 3. It has the matrix form 

K(xy ; t )  + @ l ( x  + y ; t )  + J K(xz;  t)@’(z + y; t )  dz = o for x G y 
X 

(5.13) 

where the inhomogeneous term 
scattering data, i.e. 

and the kernel 0 2  are given by the time-dependent 

dF*/dxl 
-F* } Q2=-i{dF/dx 

bf l ( t )  exp(ih.x). 
r(At) dh 

F ( x ;  t )  = I - exp(ihx) -+ 
A 27r , = I  ia‘(A,)h, 

( 5 . 1 4 ~ )  

(5.14b) 
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Having in principle solved equation (5.13) for a given set of scattering data, the spin 
field is subsequently determined by 

(5.15) 

The significance of the Gel'fand-Levitan-Marchenko equation (5.13) lies in the fact 
that it is linear and therefore lends itself to analysis and approximation schemes. In the 
important case of a 'reflectionless potential', i.e. r ( A )  = 0, equation (5.13) reduces to a 
set of linear algebraic equations. For M = 1, i.e. a single bound state of the Lax 
operator, Takhtajan obtains the single-soliton solution which, as anticipated, has the 
same form as the permanent profile solitary wave discussed in 9 4. For M = 2, 
corresponding to two bound states of L, he presents the phase and 'centre of mass' shifts 
induced during two-soliton collisions. In the present context we shall, however, not 
consider explicit solutions of equation (5.13). 

~ ( x t )  = (iK(xx; t )  - a')a'(iK(xx ; t )  - a')-'. 

6. Canonical action angle variables 

From a general dynamical point of view the canonical representation in § 3 of the 
continuous Heisenberg chain in configuration space is in a certain sense 'accidental', i.e. 
we can always envisage a formal canonical mapping p ( x ) ,  q(x) + P, 0 which, while 
preserving the Poisson bracket algebra, transforms the model to a dynamically 
equivalent action angle representation. The transformed Hamiltonian H ' ( P )  then only 
depends on the canonical momentum P and the equations of motion dP/dt = -dH'/dQ 
and dQ/dt = dH ' /dP  have the solutions P = constant and Q = (dH'/dP)t  +constant 
(Landau and Lifshitz 1960). 

It is a significant feature of the inverse scattering formalism developed in § 5 that it 
allows for the explicit construction of an action angle representation. For that purpose 
the easiest way to proceed is to derive Poisson bracket relations for the scattering data 
(5.8) or, equivalently, for the transition matrix (5.6). We here follow Zakharov and 
Manakov (1975) who have applied such techniques to the non-linear Schrodinger and 
Korteweg-deVries equations. By definition, see equation (2.3), 

or, transforming to the equivalent spin variables S" and using equation (2.7), 

In appendix 4 we evaluate equation (6.1) and obtain the important intermediate result: 

+ i d  *S(A -P . ) [ (a 'T (h ) ) i j (a -T (F) )mn  - (a-T(A ) ) i j ( a + T ( P ) ) m n  

+( T(A )a+)ij ( T(P ) d m n  - (T(A )a-)ij( T(P ) a + ) m n  I (6.2) 

(P is the principal value) which shows that the matrix elements Tj(A) satisfy a closed 
Poisson bracket algebra. All direct reference to configuration space has disappeared 
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and the dynamical behaviour of the continuous Heisenberg chain is now reflected in the 
Poisson bracket relations (6.2). 

For the matrix elements a ( A )  and b ( A )  characterising the scattering states, i.e. for 
real A ,  we infer by inspection of equation (6.2) the non-vanishing Poisson brackets 

( 6 . 3 ~ )  

(6.3b) { a  (A 1, b(cL)*) = AcLu (A  )b(cl.)* (p-- i d ( A  - p ) )  

{b(A) ,  b (p )*}=  2A21a(A)12i7r8(A - k ) .  ( 6 . 3 ~ )  

For the scattering data pertaining to the bound-state spectrum, we make use of the 
implicit equation a (A,, { S } )  = 0, n = 1, . . . , M, where we have indicated the functional 
dependence on the 'potential' S ( x t ) .  By implicit differentiation with respect to S we 
have (da/dA)An(dA,,/dS) + (da/dS)An = 0, i.e. dA,/dS = -(da/dA,)Lnl (da/dS)An. Using 
equation (6.2) for A and p in the Bargmann strip, see § 5 and appendix 2, and the 
analytic continuation of equations (6.3a-c), we obtain, assuming that the bound-state 
zeros fall within the Bargmann strip, the non-vanishing Poisson bracket 

1 
A - c L  

(6.4) 

By means of equations (6.3~-c) and (6.4) we are now in a position to construct a 
new canonical basis For the continuous Heisenberg chain. The variables associated with 
the scattering states for real A are given by 

P(A)aO,  - a < A  <CC (6.5a) 
1 P ( A )  = --In a ( A )  

ITA 

Q ( A )  = -arg b ( A )  -271. S Q ( A ) S O ,  - a < h  <a (6.5b) 

and satisfy the canonical Poisson brackets 

{P(A),  Q(c~u)l=a(A - F )  {P(A) ,  p(c~)I = { Q ( A ) ,  Q(F)}= 0. (6.6) 

The canonical variables P ( A )  and Q ( A )  are real. The momentum P(A)  depends only on 
u ( A )  and is therefore, according to equation (5.11), a constant of motion. The 
constraint I U ( A ) ~ ~  = 1 - lb(A)I2 < 1, given by equation (5.6), furthermore implies that 
P(A)  has a positive range. The coordinate Q ( A ) ,  defined as the negative phase of b ( h ) ,  
is an angle specified to within a multiple of 27r. From the time dependence of b(ht )  
given by equation (5.11) we obtain 

Q ( A t ) - Q ( A 0 ) = 4 A 2 t  - a < A < C C  (6.7) 

i.e. Q ( A t )  evolves linearly in time with frequency 4A2. The canonical variables P(A)  and 
Q(Ac) are therefore, in conformity with the general remarks at the beginning of the 
section, of the action angle type. In a similar manner, the variables pertaining to the 
bound states for A in the upper-half complex plane are defined by 

P, = i A  ReP,>O n = 1 , .  . . , M  

Q, = i In b, n = 1 , .  . . , M 

( 6 . 8 ~ )  

(6.8b) 
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and obey the canonical Poisson brackets: 

{Pm Q m l  = Snm {Pny P m l =  {Qn, Q m )  = 0. (6.9) 

The canonical variables P, and Q, are complex. According to equation (5.12b) the 
momentum P, is a constant of motion. Since, excluding zeros on the real axis, 
Im A, > 0, the range of Rep, is restricted to positive values. The time dependence of 
the coordinate Q, is inferred from equation (5.12u), i.e. 

(6.10) 

The canonical variables P, and Q,(t) are therefore also of the action angle type. 
For later purposes we finally show that the transition matrix T(A)  is uniquely 

determined by the canonical action angle variables. By means of the spectral represen- 
tation (5.9) and equations (5.7), (6.5u-b), and ( 6 . 8 ~ - b )  we obtain 

Q,(t) - Qn(0)  = 4A;t = -4Pi2t  n = 1, . . . , M. 

(6.11) 

The inverse scattering method essentially allows for the implicit construction of the 
non-linear canonical transformation, S(x t )  + P(A), Q ( A t ) ;  P,, Q,(t), relating the pre- 
cessional motion in configuration space to the motion of the action angle variables in A 
space. Since the derivation of the Poisson bracket relations, in terms of which we have 
identified the canonical transformation, only involves differential statements, the 
construction of the action angle representation is a much simpler task than the explicit 
solution of the Gel'fand-Levitan-Marchenko equation, discussed in 0 5. 

The dynamical modes of the continuous Heisenberg chain fall in two classes: 
continuum modes characterised by the canonical variables P(A) and Q ( A t )  for -00 < 
A < 00, and discrete modes specified by the canonical variables P, and Q,(t), n = 
1, .  , . , M. Since P(A) and P,, are constants of motion the continuum modes are 
characterised by the real distribution P(A), and the discrete modes by the complex 
numbers P,, i.e. two real constants of motion for each mode. A given initial spin 
configuration, say S(xt = 0), of the non-linear equation of motion (5.1), 'containing' a 
distribution P(A) of continuum modes and a set P, of discrete modes, is furthermore 
specified by the initial phases Q(A0) and Re Q,(O) and the initial 'position' Im Q,(O). 

7. The spectrum of solitons and magnons 

For the purpose of investigating the physical properties of the continuum and discrete 
modes associated with the canonical action angle representation, we have in appendix 5 
carried out the explicit construction of the Hamiltonian H,  the total momentum II and, 
corresponding to the boundary condition S' + 1 for 1x1 +CO,  the z component of the 
total angular momentum M" in terms of the action angle variables. We find 

M 
H = j d A P ( A ) e ( A ) +  n = l  E, 

M 
!3= dh P(A).rr(A)+ 1 n,, I n = l  

(7.1) 

(7.2) 

M 

M' = 1 dh P(A)m(A) + 1 M, 
fl=l 

(7.3) 
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where 

e(A)=4A2 T ( A )  = 2A m ( A ) = - l  - C O < A  <CO 
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(7.4) 
8 Re P, 

E, =- I'I, = -4 Im In P, + 271. sgn(1m P,) 
IPnl2 

M, = -2 Re  P, n = 1, . . . , M. (7.5) 

The total energy, momentum and angular momentum are composed of two distinct 
contributions: a continuum part characterised by the real canonical momentum P(A ), 
-m<A <CO, and a discrete part specified by the complex canonical momenta P,, 
n = 1,  . . . , M. 

In analogy with the treatment of the sine Gordon equation (Takhtajan and Faddeev 
1975) we interpret P(A)  as the density of continuum modes on the A axis. This 
characterisation is consistent with the action angle nature of the variables P ( A )  and 
Q ( A )  and we conclude that the A th mode in units of P ( A )  has energy € ( A ) ,  momentum 
T ( A )  and angular momentum m(A), given by equation (7.4). The band of continuum 
modes can thus be characterised by the quadratic dispersion law 

€ ( A )  = T ( A ) ~  -m<A<CO (7.6) 

and we identify them tentatively with the magnons or spin waves treated in 0 4. Notice, 
however, that the continuum modes considered here are subject to the fixed boundary 
condition S" + 1 for / x  1 + 00, unlike the spin waves discussed previously, which have a 
constant amplitude and are compatible only with periodic boundary conditions. The 
magnon band is completely characterised by the dispersion law (7.6) and the density 
P(A)  in A space. With our choice of ground state the angular momentum of the 
continuum modes is negative and has a magnitude equal to the integrated density 

The interpretation of the discrete contributions to H, I'I and M'is more straight- 
forward. The nth mode has energy E,, momentum I'I, and angular momentum M,, 
given by equation (7.5). Introducing P, =A,,  exp(i6,), where, since Rep, > 0, 
71./2, we obtain, eliminating A ,  and e,, the following dispersion law for the n th discrete 
mode: 

P(A)  dA. 

(7.7) 

This expression has exactly the same form as the dispersion law (4.13) for the 
permanent profile solitary wave discussed in Q 4. The discrete modes inferred by the 
inverse scattering method can thus be identified with the solitary waves and are 
according to modern terminology called solitons (Scott et a1 1973). Unlike the 
magnons or continuum modes which are extended in space, the solitons are spatially 
localised objects with a width r, given by equation (4.10), r, = 8/E,, i.e. inversely 
proportional to their energy. Like the sine Gordon 'breather' modes (Bishop and 
Schneider 1979), the solitons have internal structure; they carry an angular momentum 
-M,. In the limit of small momentum lrI,\<< 1, E, =I'I:/lM,\, and we can associate an 
effective mass lM,1/2 with the soliton. The 'rest mass' \M,1/2 is a function of the 
internal state and is proportional to the angular momentum. For a more detailed 
discussion of the soliton or solitary wave we refer to § 4 where also the dispersion law 
(7.7) in figure 12 is plotted for different values of \M,,I. 
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The localised soliton modes and extended magnon modes thus 'diagonalise' the 
Hamiltonian H and completely exhaust the spectrum of the continuum model (2.6) for 
h = 0, i.e. the classical Heisenberg chain in the long-wavelength limit. Since the model 
in eigenvalue space {A} is essentially a gas of non-interacting magnon modes (radiation) 
and soliton modes (particles) the question of the stability of solitons under collisions in 
configuration space, investigated numerically by Tjon and Wright (1977), is immedi- 
ately answered. Under soliton-soliton collision the constants of motion E, IT and M for 
each individual mode are preserved. Consequently, since the solitons are spatially 
localised their shape long before and long after a collision is unaltered. In addition to E, 
IT and M, related by the dispersion law (7.7), the dynamical state of a soliton is 
characterised by the 'centre of mass' xo and the phase c $ ~  which, not being conserved, do 
change under collision. As mentioned in 8 5, the shifts Axo and A&, in the case of 
two-soliton collisions have been given in Takhtajan on the basis of the Gel'fand- 
Levitan-Marchenko equation. 

8. The infinite series of conserved densities 

Since the Heisenberg chain in the long-wavelength limit is a completely integrable 
Hamiltonian system, it possesses an infinity of constants of motion, say the canonical 
momenta P, and P(A)  or, equivalently, the matrix element u ( A ) .  What is more 
interesting, the model has an infinite set of independent constants of motion Ak, 
k = 1,.  . . , and Bk, k = 0, . . . , which have the form of conserved integrated densities, 
i.e. Ak = j d x a k ( x )  and Bk =Jdxbk(x) ,  where a k ( X )  and bk(X) are the conserved 
densities. The recursive procedure for determining the set Ak and Bk is carried out in 
appendix 6 ,  using the methods developed by Zakharov and Faddeev (1972) for the 
Korteweg-deVries equation and by Takhtajan and Faddeev (1975) for the sine Gordon 
equation. 

We find 

a"x'=&-) 1 dS"(x) + j r )  dSY(x)  +(--;i;;-)*](=as(x)) dS'(x) 

(= -$%-(x)) 
1 SY(x)  dS'(x)/dx -S"(X) dSY(x)/dx 
4 l + S ' ( X )  

bo(x) = - - 

b1(x)=S2(x) - l (=m(x))  (8.3) 

(8.4) 

dy S'(y)  [ dz S " ( z )  -SY(x)  J dy S ' ( y )  dz S Y ( z )  (8 .5 )  
-m -m -m 

As expected the series include the energy, momentum and angular momentum 
densities, i.e. E ( X )  = 4al(x),  ~ ( x )  = -2bo(x) and m(x) = b l ( x ) .  We notice furthermore 
that the densities fall into two classes. For n 2 2b,(x) is a non-local function of the spin 
density, whereas b o ( x ) ,  bl(x) and u,(x) for n 2 1 are local functions of S(x)  and its 
derivatives. The local densities a l  = E ,  bo= n- and bl = m are related to the global 
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symmetry transformations: time translation, space translation and spin rotation. The 
question of whether the other conserved densities are associated with underlying local 
symmetries of the Heisenberg chain is a fascinating one, but so far essentially 
unexplored. 

9. Summary and conclusion 

In this paper we have carried out a detailed analysis of certain aspects of the dynamical 
behaviour of the classical isotropic Heisenberg chain in the long-wavelength limit. By 
means of the ‘Russian version’ of the inverse scattering techniques, we extended the 
work of Takhtajan (1977) and exhibited, in particular, the canonical action angle 
representation. In contrast to the sine Gordon equation which has three kinds of 
modes, namely ‘kinks’, ‘breathers’ and ‘phonons’ (Bishop and Schneider 1979), the 
spectrum of the Heisenberg chain is exhausted by localised ‘magnetic’ soliton modes 
and extended magnon modes. 

We remark in passing that the canonical action angle representation allows for a 
semiclassical quantisation according to standard rules by simply replacing the Poisson 
brackets by commutators (Landau and Lifshitz 1958, Korenpin and Faddeev 1976). 
Owing to the uncertainty principle the soliton mode thus becomes delocalised and both 
solitons and magnons appear as elementary excitations on an equal footing. The 
quantum Heisenberg chain in the semiclassical limit, i.e. the limit of large S since S h  + 1 
for ZZ + 0, thus consists of two kinds of non-interacting bosons: spin-one magnons with a 
quadratic dispersion law E = p 2  and solitons with an arbitrary integer spin v and a 
dispersion law E,, =: 16 sin2(P/4)/v, v = 1, . . . ( h  = 1). We notice the interesting feature 
that the classical soliton band in figure 12 under quantisation breaks up into separate 
dispersion laws labelled by the spin quantum number v. Furthermore, in the low- 
momentum limit p << 1, i.e. for long wavelengths, the effective soliton mass is quantised. 
Since, as is well known, the classical canonical transformation does not correspond to a 
unique quantum-mechanical unitary mapping, the problem of calculating quantum 
corrections to the semiclassical limit is a subtle one which we shall consider elsewhere. 

The action angle representation does also provide the natural starting point for 
constructing the statistical mechanics of the Heisenberg chain from ‘first principles’, as 
well as understanding the influence of perturbations, such as local or exchange 
anisotropy, impurities, finite lattice distance effects, etc. This point of view has also 
been stressed by Long and Bishop (1979), who consider the general single solitary wave 
in the presence of external magnetic and anisotropy fields. 
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Appendix 1. The Lax representation 

In order to demonstrate the properties of the Lax representation iLV = A V and 
idV/dt = M V ,  where L = Sd/dx and M = 2Sd2/dx2 + (dS/dx) dldx, we note that the 
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invariance of the spectrum {A} implies that the Lax operator L develops according to a 
similarity transformation ~ ( t ) ,  i.e. L(t)  = U(t)L(O)U-'(t). Consequently, U(t) = 
U(t)W(O) and we infer idU/dt =MU or dL/dt = i[L, MI. Inserting L and M in the 
equation of motion for L we obtain 

d S  d 

which, using the length condition S2 = 1, i.e. S dS/dx + (dS/dx)S = 0 and S d2S/dx2 + 
(d2S/dx2)S + 2(dS/dx)* = 0, implies the equation of motion (5.1), dS/dt = 
-ii[S, d2S/dx2], thus proving the above assertion. 

Appendix 2. The associated eigenvalue problem 

The eigenvalue problem of the Lax operator is given by 

d U  S" s- 
dx 

i-=ASU (A2.1) 

where S + a' for 1x1 + W .  We note the following general properties of equation (A2.1): 

U i  and U2 solutions then W2 = UIA, A constant ( A 2 . 2 ~ )  

det W = constant (A2.2b) 

U solution for A then aYW*aY solution for A *. ( A 2 . 2 ~ )  

The property ( A 2 . 2 ~ )  is proved by taking a derivative of WilUl using equation 
(A2.1). Expressing det W in the form exp(Tr In 9) and applying id/dx we obtain, using 
(A2.1) and the cyclic permutability of operators under the trace, id(det U)/dx = (det U) 
Tr(AS) or, since Tr S = 0, det U = constant, i.e. the statement (A2.2b). Finally, since 
S" = -uySu' the property ( A 2 . 2 ~ )  follows by complex conjugation of equation (A2.1). 

For 1x1 +CO,  using S + a', the general solution of equation (A2.1) has the form 
exp(-iAa'x)A, A a constant matrix. By means of the method of variations of 
parameters, i.e. by inserting U(x) = exp(-iAa'x)A(x) in equation (A2.1) and solving 
for A(x),  we obtain the Volterra integral equation 

W(x) = e x p ( - h ' ( x  - x o ) ) ~ ( x o )  - i A  exp(-iAo'(x - y ) ) ( S ( y )  -a ')U(y) dy. 

For the Jost functions F(xA) and G(xA) defined by the boundary conditions 

i:, 
F(xA) + exp(-iha'x) for x + +CO ( A 2 . 3 ~ )  

G(xA) + exp(-iAa"x) for x + -cc (A2.3b) 

we have 

F(xA) = exp(-iha'x) +ih exp(-iAa'(x - y) ) (S (y )  -a ' )F(yA)  dy (A2.4a) I,m 
r x  

G(xA) = exp(-iAa'x)-iA J exp(-iAu'(x -y))(S(y)-a')G(yA) dy. (A2.4b) 
-W 
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In order to examine the analytic properties of F and G as functions of A we perform 
a Neumann expansion (Courant and Hilbert 1966) of equations (A2.4a-6): 

m 

F(xA)= F'"'(xA) F"'(xA) = exp(-iha'x) 

G(xA)= G'"'(xA) G'"'(xA) = exp(-iha'x) 

n = O  

m 

n = O  

where 
00 

F'""'(Ax) = +iA 

G(n+1) ( A x )  = -iA 

We next establish the bounds 

exp(-iha'(x - y))(S(y)  -a")F'"'(yA) dy 

exp(-iAa'(x - y))(S(y)  - aL)G(n'(yA) dy. I-: 
.OD 

lF""(xh)I < / A I  J exp(h"a'(x -y))IS(y)-a'IF'"'(yh) dy 
X 

iG'""'(xA)l<lAl 1' exp(A"a'(x-y))lS(y)-a'iG'"'(yA) dy 
-m 

where IAl denotes the matrix IAiil and A "  is the imaginary part of A, A = A ' + ih". A first 
iteration yields 

OD 

lF'l)(xA)l < / A  I exp(A"a'x) V(y) dy 

IG'"(xA)l< l A /  exp(A"a'x) 1-1 V(y) dy 

where 

I l-S'(Y) exp( -2A "y )( 1 - S' ( y )') 1'2 

V(y)={exp(2A"y)(l -S"(y)2)1/2 1 -S'(Y) 

The bounds are controlled by J: V(y) dy andJta V(y) dy which, provided 11 -S"(y)/  < 
exp(-4Aolyl) for lyl +a, are convergent in the Bargmann strip lh"l<Ao. Moreover, 
under the weaker condition 11 -S ' (y ) /<  1/Iyl2 for l y l - $ a ,  the second column of 
jxm V(y) dy is finite for A " >  0 and the first column finite for A " <  0, and vice versa for 
JTm V(y) dy. Denoting 5," V(y) dy = M(x),  M'(x) = - V(x), we have 

lF(l'(xA)l < / A  I exp(A"a'x)M(x) 

IF'2'(xA)] < IA 1' exp(h"c'x) 

and by induction 

00 

V(y)M(y) dy = IA(' e~p (h"a 'x )M(x)~ /2  

IF'"'(xh)l< IA I n  exp(A"a'x)M(x)"/n !. 

Similarly 

/G'"'(xh)l< / A  I n  exp(h"a"x)N(x)"/n ! 
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where Jtm V(y) dy = N(x).  From the bounds for F '")  and G'"' we infer 
m 

F(xA) = 2 F'"'(xA) < exp(A"v'x) exp(lA IM(x)) 

G(xA) = G'"'(xh) < exp(h"a'x) exp(lAIN(x)) 

n =o 

m 

n = O  

and it follows that equations (A2.4~-b)  have solutions and that furthermore, because of 
uniform convergence, the Jost functions F and G are analytic in the Bargmann strip 
IA''l< Ao .  The analyticity domain is larger depending on which matrix elements of F and 
G we consider. Since 

dxl V(xl) jxl dx2 V(xz). . . 
m 00 m 

M"(x) = n !  dx, V(x,) 
fx"-l 

N n  (x) = II ! dxl V(X1) j-: dX2 V(XZ) . 1-L dxn V(Xn) f-: 
we infer by inspection, inserting V(x), that the columns (MYl, Mi1 ) and (NYz, N ~ z  ) are 
analytic for A " < O  and the columns (MY2, M i 2 )  and (IVYl, N i l )  analytic for A " > O ,  
under the weaker condition 11 -S ' (y ) l<  l / ly12 for lyl+oo. Consequently, (Fll, FZI) 
and (Glz,  GZ2) are analytic for A " <  0, and (F12, Fz2) and (Gll ,  Gzl) analytic for A " >  0. 

By inspection of the bounds and by induction we establish that 

(Fll(xA), F ~ ( x h ) ,  Glz(xA), GzAxA)) <exp(-/A"lx) 

(FIz(x~ ), FZZ(XA 1, G I  l(xA ), GZI (xA 1) < exp(-A "x) 

forA"<O 

for A "  > 0. 

Consequently, by closing the contour for A " <  0: 

Fll(xh) - exp(-ihx) exp(iAy) dh 
( F21(xA) ) A 277- 

exp(-ihy) dh 1 (Gz2(.xA)-exp(iAx)) A 277 

-=o  for x > y 

-= 0 for x < y Giz(XA) 

and, similarly, by closing the contour for A " >  0: 

and we infer in matrix form the Jost representations (Takhtajan 1977) 
.m 

F(xA) = exp(-iAdx) + A  J K(xy) exp(-ihv'y) dy 
X 

( A 2 . 5 ~ )  

G(xA) = exp(-iAa'x)+h N(xy) exp(-iha'y) dy. (A2.5 b) 

Here the kernels K(xy) and N(xy) depend functionally on S(x) but are independent of 
the eigenvalue A .  Since both F and G are solutions of equation (A2.1) we obtain by 

1-1 
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inserting equations (A2.5~-b)  partial differential equations for K and N, 

with the boundary conditions 

S(x) - (T' + iK(xx) - iS(x)K(xx)a' = 0 

S(x) - a' - iN(xx) +iS(x)N(xx)a'  = 0, 

S(x) = (iK(xx) -a ')a"(iK(xx) - a')-' 
that is 

( A 2 . 6 ~ )  

(A2.6b) 

( A 2 . 7 ~ )  

S(X) = (iN(xx) +a')a'(iN(xx)+a')-'. (A2.7b) 

The above initial value problems have been considered by Goursat (1964). 
Since F and G are solutions of equation (A2.1) the property ( A 2 . 2 ~ )  implies 

G(xA) = F(xA)T(A) (A2.8) 

where, using the properties (A2.2b-c) and equations (A2.3a-b), the transition matrix 
has the form 

a ( A )  a(A)(a(A*))*+b(A)(b(A*))* = 1. 
T(A)={ b(A) (a@*))* 

(A2.9) 

From the analytic properties of F and G and equations (A2.8) and (A2.9) it follows that 
a(A)isanalyticforA">OprovidedS(x)+a' fasterthan 1/lxI2for Ixl+0O, andthat a ( A )  
and b(A) are analytic in the Bargmann strip / A " /  < A0 provided S(x)+  a' faster than 
exp(-4Aolx)) for 1x1 +CO. From equations (A2.5a-b), (A2.8) and (A2.9) it follows, 
furthermore, that a ( A ) +  1 for / A \ + 0 O ,  A " > O .  Consequently, a ( A )  has only a finite 
number of zeros A,, n = 1, . . . , M, for A " >  0 ;  an infinite number would, since a ( A )  + 1, 
imply a limit point, i.e. an essential singularity, in the finite region of the plane A " >  0, 
thus violating the analycity of a ( A ) .  

Consider the function 

A - A "  
a ' ( A ) = a ( A )  

n = l  A - A n  
(A2.10) 

which is analytic for A " >  0, has no zeros and approaches unity for IA 1 + Co. 'Since ;(A) is 
an entire function, it follows that In 6(A) is analytic for A " >  0 and approaches zero for 
\ A  I + 00. For A "  = 0, In a"@)  thus satisfies the Kramers-Kronig relations 

It follows from equations (A2.9) and (A2.10), introducing r ( A )  = b(A)/a(A), that 

In la'(A)l =In In(A)l= -3 ln(1 + /r(A)l). 

Consequently, a ( A )  satisfies the spectral representation (5.9) in Q 5 ,  i.e. 

d p  ln(1 + i r ( ~ ) i ~ )  A -A,  
2rri p -A- is  

a(A)=exp(  -1 - (A2.11) 
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Appendix 3. The Gel’fand-Levitan-Marchenko equation 

In order to derive the Gel’fand-Levitan-Marchenko equation we use equations (A2.8) 
and (A2.9). Introducing r ( A )  = b(A)/u(A), 

(U (A  )-’ - 1 ) ~ ~ ~  ( X A  ) = P’~ 1 ( ~ ~  ) + P’,,(xA ) r ( ~  ) - G~ ( X A  ) 

(~(A)- l - l )Gzi(xA)= F~~(xA)+F~~(xA)~(A)-Gz~(xA) 

Inserting equations (A2.5a-b), multiplying by exp(iAz)/A, and integrating over A, 
we obtain 

dA J’ exp(iAz)Gll(xA)(u(A)-’ - 1 ) A - l  - 
21T 

dh J’ exp(iA~)G~~(xA)(a(A)-’  - 1 ) A - 1  - 
2lT 

= 1 exp(iAz) [ A-’r(A) exp(iAx) + r ( A )  Kz2(xy) exp(iAy) dy i,“ 

Since Gll and GZ1 are analytic for A ” > O  and fall off faster than exp(-A”x) and 
u(A)+ 1 for IAl+m we close for 2)-x the contour for A ” > O .  Using 
jexp(iAx) dA/27r = S(x) we have 

+ 2 A-’r(A) exp(iA (x + z ) )  

where u’(A,) = [ d ~ z ( A ) / d A ] ~ = ~ ~ .  At the zeros of u(A) we obtain, using equations 
(A2.5u-b), (A2.8) and (A2.9), and assuming that A, falls within the Bargmann strip 
/A‘/ /  <A, ,  i.e. b, = b(A,), 

K&Y) exp(iA,y) dy 
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which, by insertion for z > x, yield the Gel'fand-Levitan-Marchenko equations 

(A3.la) 

b n  
M 

+ 1 exp(ih,(y +z))(-i) -) dy = 0. 
n = l  a ( A n )  

(A3.1b) 

Similarly, another set of integral equations can be derived for K12 and K22. Compactly, 
the Gel'fand-Levitan-Marchenko equation for the Jost kernel K can be expressed in 
the form given by equations (5.13) and (5.14a-b) in 5 5 ,  in agreement with Takhtajan 
(1977). Given the solution of the Gel'fand-Levitan-Marchenko equation for a set of 
scattering data {r(A); An, b,} the spin density S(x) is determined by equation (A2.7a). 

Appendix 4. The action angle representation 

In order to evaluate the Poisson bracket 

we use equation (A2 8), the identity W'F + F-'6F = 0, and from equations (A2.5a- 
b )  the property dF(yA)/dS"(x) = dG(xA)/dS"(y) = 0 for y >x, i.e. 

(A4.2) 

By differentiation of equation (A2.1) dG/dS" satisfies the Green's function equation 

(A4.3) 

Integrating over the interval x - E  to x + E  and letting E -* 0, we obtain the boundary 
condition idG(x+A)/dS"(x) = Aa"G(xh) and in terms of G the solution of equation 
(A4.3), 

-- dG(yh I - -iA G( yh ) G- ' (xh )a"G (xh ) 
dS" (x) 

which inserted in equation (A4.2) for y = x+  yields 

f o r y > x  (A4.4) 

-- dT(h) - -ihF-'(xh)a"G(xh). 
dS" (x) 

(A4.5) 
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Substituting equation (A4.5) in equation (A4.1) and using the identity 

= 2(h - p )  E " ~ ' ( F - ' ( X A ) ~ " G ( X A ) ~ ~ ( F - ' ( X ~ ) ~ ~ G ( ~ ~ ) ) ~ , ~ S ~ ( ~ )  
.rPY 

which follows from equation (A2. l ) ,  we obtain, performing the integration and 
controlling the limits of integration by means of the cutoff L, 

(A -F ) {T j (A ) ,  T m n b ) }  
= i A p  lim [(F-'(LA)(+"G(LA))ij(F-'(Lp)a"G(Lp)),n - ( L  + -L)] .  

L+m 01 

Finally, using equations (A2.3~-b)  and (A2.8) and for A "  = 0, limL+m P exp(iAL) = 
d ( x ) ,  introducing v* = v x  *ivy  and performing a bit of Pauli matrix algebra we obtain 
equation (6.2) in § 6. 

Appendix 5. Energy-momentum-angular momentum 

The form of the real Hamiltonian (7.1) is inferred from equations (6.7) and (6.10) in 
conjunction with the equation of motion dQ/dt = {H, Q} and dP/dt = {H, P} and 
equations (6.6) and (6.9), i.e. 

M 

H = dAP(A)(2A)2 + 1 4(Pi1  +(Pi ')*).  I n = l  
(A5.1) 

The form of the real total momentum (7.2) is obtained using equation ( 3 3 ,  i.e. 

(A5.2) 

Inserting equation (A4.9,  performing a partial integration using equation (A2. l), 
S 2  =I, and S -$ a' for 1x1 -$CO, and by the aid of equations (A2.8) and (A2.3~-b)  

{T(A),  II} = -iA[a'T(A) - T(A)(+'] forhrr=O. (A5.3) 

By analytic continuation into the Bargmann strip using equation (A2.9), {b(A) ,  II} = 
2ihb(A) and {b,,, II} = 2iAnbn or, by equations (6.5b) and (6.8a-b), 

{Q(A), II} = -2A, -CO < A <CO (A5.4) 

Finally, using equations (6.6) and (6.9) the total momentum must have the form 

{Qn, II} = -2iPi1, n = 1, . . . , M. 

M 

II = dA P(A)2A + 1 2i[ln P, -In P: -in- sgn(1m P,)] (A5.5) .i fl=l 

where the branch of the logarithm is chosen such that the discrete contributions to H 
and II vanish for Rep,, + 0. 

The real total angular momentum (7.3) is determined using equations (2.7) and 
(3.7), i.e. 

dT(A) 
{T(A),  M " }  = I dx{T(A), S " ( x ) }  = 1 E"" 1 dxdSD(x) S Y ( x ) .  (A5.6) 

PY 
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Inserting equation (A4.3,  using the identity 

d - (F-'(xh)~"G(xh)) = -2A 1 E~~'F-~(XA)C~G(XA)S'(X) 
dx Pv 

which follows from equation (A2.1), and integrating, we have for A "  = 0 

{T(A) ,  M " }  = [F-'(coA)HG(coA) -F-'(-coA)c"G(-coA)]. 
2 

Since S + C' for 1x1 + CO only {T(A),  M " }  is well defined. Using equations (A2.8) and 
(A2.3 a-b) 

(A5.7) 

In the Bargmann strip by the aid of equation (A2.9) {b(A), M'}=-ib(A) and 
{b,,, M'} = -ibn, i.e. by equations (6.5b) and (6.86): 

{Q(A),M'}=I,-co<A<co {Q,,M"}= 1, n = 1,. . . , M  (A5.8) 

i 
2 

{T(A), M'}=-  [a'T(A) - T(A)c']. 

and we infer, using equations (6.6) and (6.9), 
M 

-M' = dh P(A)+ 1 (P,, +P:). (A5.9) I fl=l 

Appendix 6. The constants of motion 

In order to determine the infinite set of conserved integrated densities, we expand the 
real constant of motion Im In a ( A )  in powers of A and l / A  for A "  = 0. By means of 
equation ( 6 . 1 1 ~ )  we obtain 

m 

Im(lna(A))= - A k B k  for [ A  I + 0 
k = O  

where 

( A 6 . 1 ~ )  

(A6.lb) 

M 
Bo= - I d p  P(p)p + i 1 [In PE -In P,, + irr sgn(Im Pn)] 

n = l  
(A6.2 b) 

(A6 .2~)  

In configuration space the independent constants of motion A k  and Bk are derived by a 
recursive procedure. Introducing 

dln Gll(xA) 
dx 

o(xA) = + ih (A.6.3) 
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we have, using equations (A2.8), (A2.9) and (A2.3u-b), 

Im In u ( A )  = Im c+(xA) dx. (A6.4) 

The density a(xA) is determined by considering equation (A2.1) for Gl l  and introduc- 
ing @(xA) = G21(xA)/G11(xA), i.e. by equation (A6.3) 

(A6.5) c+(xA) = -iA (S'(x) - 1 + S-(x)@(xA)) 

where @(xA) satisfies the non-linear generalised Riccati equation (Ince 1956) 

+A[S-(X)@(XA)~+~S~(X)@(XA)-S~(X)]= 0. . d@(xA 
1- 

dx (A6.6) 

Inserting @(xA) = X:=l A"f,(x) and @(xA) = Z:=o A-"g,(x) in equation (A6.6) and 
using @(-a, A )  = 0, we obtain the recursion formulae 

( A 6 . 7 ~ )  

n + l  

go = (1 - s')/s-. (A6.7b) dg" 
dx p = o  

i-+S- gPg,-,+1+2S'g,+1=~ 

By straightforward iteration we find 

S + ( y )  dy - A 2  I_k dy S ' ( y )  dz S+(z)  +. . . for IA 1 + 0 
-W 

@(xA) = 

which, by substitution in equations (A6.5) and (A6.4), yield the conserved densities 
u,(x) and b,(x) associated with the constants of motion A ,  and B,, see § 8. 

Note added in proof. After the completion of the present paper the author became aware of a paper by 
Zakharov and Takhtajan (1979) on the equivalence of the non-linear Schrodinger equation and the equation 
of the Heisenberg ferromagnet, which contains some of the material presented here, in particular the 
recursive procedure for the determination of the series of constants of motion. 
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